Electronic Supplementary Information

Synthesis and Characterization of Oligonucleotides Containing an O⁶-2'-Deoxyguanosine-Alkyl-O⁶-2'-Deoxyguanosine Interstrand Cross-Link in a 5'-GNC Motif and Repair by Human O⁶-Alkylguanine-DNA Alkyltransferase

Francis P. McManus, Qingming Fang, Jason D. M. Booth, Anne M. Noronha, Anthony E. Pegg and Christopher J. Wilds*

Contents

Page

Supplementary Figure 1 -	300 MHz ¹ H NMR spectrum of compound (6a) (in d ₆ -DMSO)	S-2			
Supplementary Figure 2 -	$300 \text{ MHz}^{1}\text{H} \text{ NMR}$ spectrum of compound (6b) (in CDCl ₃)				
Supplementary Figure 3 -	121.5 MHz ³¹ P NMR spectrum of compound (7a) (in d ₆ -acetone)				
Supplementary Figure 4 -	121.5 MHz ³¹ P NMR spectrum of compound (7b) (in d_6 -acetone)				
Supplementary Figure 5 -	C-18 RP HPLC profiles to monitor TBS removal				
Supplementary Figure 6 -	Strong anion exchange HPLC profiles of crude and purified XL7	S-7			
Supplementary Figure 7 -	C-18 RP HPLC profile of digested cross-linked duplexes XL4				
	and XL7	S-8			
Supplementary Figure 8 -	ESI MS spectrum of oligonucleotide XL4	S-9			
Supplementary Figure 9 -	ESI MS spectrum of oligonucleotide XL7	S-10			
Supplementary Figure 10 -	Absorbance (A_{260}) versus temperature profiles	S-11			
Supplementary Figure 11 -	CD spectra of non cross-linked control duplex and cross-linked				
	duplexes XL4 and XL7	S-12			
Supplementary Figure 12 -	Molecular models of non cross-linked control duplex and				
	cross-linked duplexes XL4 and XL7	S-13			
Supplementary Figure 13 -	12% SDS-PAGE Gel of purified hAGT proteins	S-14			
Supplementary Figure 14 -	Effects of mutations on secondary structure of hAGT by CD	S-15			
Supplementary Figure 15 -	Effects of mutations tertiary structure of hAGT by				
	monitoring intrinsic fluorescence	S-16			
Supplementary Figure 16 -	Effect of mutations on hAGT stability monitored by				
	thermal denaturation as measured by CD	S-17			
Supplementary Figure 17 -	Graphic representation of the % ICL	S-18			
Supplementary Figure 18 -	Time course repair of XL4 and XL7 by hAGT	S-19			
Supplementary Figure 19 -	Graphic representation of the % abundance of each species				
	in the time course repair by hAGT	S-20			
Supplementary Figure 20 -	Electromobility shift assay of C145S hAGT binding to the				
	control DNA duplex	S-21			
Supplementary Figure 21 -	Hill plot representation of log[PD]/[D] versus log[P]				
	for the control duplex	S-22			
Supplementary Table 1 -	ESI-MS results of wild-type hAGT and variants	S-23			
Supplementary Table 2 -	Effects of mutations on fluorescence emission signals of hAGT	S-24			
Supplementary Table 3 -	Difference in T_m between mutants and wild-type hAGT	S-25			

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2010

Supplementary Figure 2 - 300 MHz ¹H NMR spectrum of compound (6b) (in CDCl₃)

Supplementary Figure 3 - 121.5 MHz ³¹P NMR spectrum of compound (7a) (in d₆-acetone)

Supplementary Figure 5 - C-18 HPLC profiles of (A) crude Y-TBS (XL4 precursor), (B) Y-OH after removal of the TBS group, and (C) final extension product XL4. Gradient of 0-60% buffer B over 30 min (buffer A: 50 mM sodium phosphate, pH 5.8 and buffer B: 50 mM sodium phosphate, pH 5.8, 50% acetonitrile) at a flow rate of 1.0 mL/min and monitored at 260 nm.

Supplementary Figure 6 - SAX HPLC profiles of crude **XL7** (**A**) and purified **XL7** (**B**). For analytical runs the column was eluted with a linear gradient of 0-60% buffer B over 30 min (buffer A: 100 mM Tris HCl, pH 7.5, 10% acetonitrile and buffer B: 100 mM Tris HCl, pH 7.5, 10% acetonitrile, 1 M NaCl) at a flow rate of 1.0 mL/min over 30 min, monitored at 260 nm.

Supplementary Figure 7 - C-18 HPLC profile of digested cross-linked duplex **XL4** (**A**) and **XL7** (**B**). The column was eluted with a linear gradient of 0-60% buffer B over 30 min (buffer A: 50 mM sodium phosphate, pH 5.8 and buffer B: 50 mM sodium phosphate, pH 5.8, 50% acetonitrile) at a flow rate of 1.0 mL/min over 30 min, monitored at 260 nm.

(A)

(B)

Supplementary Figure 8 - ESI MS spectrum of oligonucleotide XL4

Supplementary Figure 9 - ESI MS spectrum of oligonucleotide XL7

Supplementary Figure 10 - Absorbance (A₂₆₀) versus temperature profiles of non cross-linked duplex (____) 5'- dCGATGTCATCG-3'/5'-dCGATGACATCG-3', cross-linked duplex **XL4** (____), and cross-linked duplex **XL7** (.....). Solutions containing a total strand concentration of 2.8 μ M for the cross-linked (**XL4** and **XL7**) and non-cross-linked control duplexes in 90 mM sodium chloride, pH = 7.0, 10 mM sodium phosphate, and 1 mM EDTA buffer, were heated at 0.5°C/min.

Supplementary Figure 11 - Circular dichroism spectra of non cross-linked duplex (____) 5'- dCGATGTCATCG-3'/5'- dCGATGACATCG3', cross-linked duplex XL 4 (____), and cross-linked duplex XL 7 (.....). Solutions containing a total strand concentration of 2.8 μ M for the cross-linked duplex XL 4,7 and 2.8 μ M of the non-crosslinked control duplexes in 10 mM sodium phosphate, pH 7.0, 90 mM sodium chloride, and 1 mM EDTA. Spectra are the average of 5 scans and were recorded at 10 °C.

Supplementary Figure 12 – Molecular models of non cross-linked control duplex and cross-linked duplexes **XL4** and **XL7** that were geometry optimized using the AMBER forcefield.

non cross-linked control

XL4

XL7

Supplementary Figure 13 - 12% SDS-PAGE Gel of purified hAGT proteins. Loaded: lane 1, 10 µL of Unstained Protein Molecular Weight Marker (Fermentas); lane 2, 7 µg wild-type hAGT protein; lane 3, 7 µg C145S hAGT protein; lane 4, 7 µg P140A hAGT protein; lane 5, 7 µg V148L hAGT protein.

Supplementary Figure 14 - Effects of mutations on secondary structure of hAGT by circular dichroism. Scans were taken with 5 μ M wild-type hAGT (____), C145S (____), P140A (___) and V148L (___) between 260 and 200 nm in CD buffer (260-203 nm shown due to high voltage below 203nm).

Supplementary Figure 15 - Effects of mutations on tertiary structure of hAGT by studying the intrinsic fluorescence signals of 1μ M of wild-type hAGT (____), C145S (____), P140A (___) and V148L (__). (A) Monitoring of intrinsic tryptophan and tyrosine fluorescence. (B) Monitoring of intrinsic tryptophan fluorescence.

Supplementary Figure 16 - Effect of mutations on protein stability by thermal denaturation of 5 µM wild-type hAGT (____), C145S (____), P140A (___) and V148L (__) by monitoring the change in molar ellipticity at 222nm.

S-17

Supplementary Figure 17 – Graphic representation of the % ICL of (A) XL4 and (B) XL7 remaining in the reaction tube obtained using ImageQuantTM.

(B)

Supplementary Figure 18 – Time course repair of XL4 and XL7 by hAGT. (A) Denaturing gel of the repair of 2 pmol of XL4 by 60 pmol hAGT as a function of time: lane 1, 2 pmol Control; lanes 2-10, 2 pmol XL4 + 60 pmol hAGT incubated for 0, 5, 15, 30, 60, 120, 240, 510 and 540 min, respectively (B) Denaturing gel of the repair of 2 pmol of XL7 by 60 pmol hAGT as a function of time: lane 1, 2 pmol Control; lanes 2-10, 2 pmol hAGT incubated for 0, 1, 2, 5, 10, 15, 30, 60, 120 and 180 min, respectively.

Supplementary Figure 19 – Graphic representation of the % abundance of each species in the time course repair by hAGT of (A) XL4 and (B) XL7 (see Supporting Information for denaturing gels). hAGT-DNA complex/partially repaired product (\blacktriangle); free DNA/ fully repaired product (\blacksquare); ICL/ unrepaired substrate (\bullet).

(A)

(B)

Supplementary Figure 20 - Electromobility shift assay of C145S hAGT binding to the control DNA duplex. EMSA Gel of C145S hAGT and the control 11-mer DNA duplex. 5 nM control DNA and 0 - 35.69 μ M C145S hAGT.

Supplementary Figure 21 - Hill plot representation of $\log[PD]/[D]$ versus $\log[P]$ for the control duplex (**•**), XL4 (**•**) and XL7 (**•**).

	Molecular Weight (Da)		
Protein	Calculated	Observed	
Wild-Type hAGT	21876.2	21875.0	
C145S	21860.1	21860.0	
P140A	21850.1	21850.5	
V148L	21890.2	21889.5	

Supplementary Table 1 - ESI-MS results of wild-type hAGT and variants

	λex 280nm		2	λex 295nm	
	λem	Fluorescence	λem	Fluorescence	
Protein	(nm)	Intensity	(nm)	Intensity	
Wild-Type hAGT	346	438	350	184	
C145S	350	409	350	176	
P140A	346	440	348	169	
V148L	350	428	350	173	

Supplementary Table 2 – Effect of mutations on fluorescence emission signals of intrinsic hAGT on Tryptophan and Tyrosine (λex 280nm) and Trypotophan only (λex 295nm).

Protein	Melting Temperature (°C)			
FIOLEIII	Observed	Wild-Type	Difference	
Wild-Type hAGT	56.5	56.5	0.0	
C145S	50.7	56.5	-5.8	
P140A	47.0	56.5	-9.5	
V148L	48.0	56.5	-8.5	

Supplementary Table 3 - Difference in T_m between mutants and wild-type hAGT.